Biochemical Pharmacology, Vol. 31, No. 8, pp. 1654-1655, 1982. Printed in Great Britain.

Effect of the opioid analgesic tramadol* on inactivation of norepinephrine and serotonin

(Received 7 September 1981; accepted 16 November 1981)

Interference with norepinephrine (NE)- and serotonin (5-HT)-inactivation by blockade of neuronal uptake is a common property of many opioid analgesics and antagonists [3-5, 11-13, 16, 18, 21]. Interference of opioid-like analgesics with amine inactivation may be clinically relevant as known from severe reactions due to MAO inhibitors and potentiation of NE pressor response in pethidine pretreated patients [8, 20].

Tramadol is a new synthetic opioid with analgesic potency comparable to pentazocine, codeine and dextropropoxyphene [1, 6]. It increased the NE pressor response in anaesthetized cats [14] and pithed rats [7]. Further, tramadol toxicity was enhanced in tranylcypromine-pretreated mice [7]. A possible interference of tramadol with monoamine inactivation was therefore investigated.

Materials and methods

Methods. LD₅₀ Values, 24 hr after intraperitoneal application of test drugs were determined in groups of 10 male mice (NMRI, breeder Schmitz, 18–25 g). In parallel, the animals were pretreated with 10 mg/kg i.p. tranylcypromine 2 hr before application of test drugs and distance factors of lethality curves were calculated according to Litchfield and Wilcoxon [9].

Synaptosomal uptake of monoamines was determined according to Raiteri et al. [15] with several modifications as follows: Krebs-Ringer medium pH 7.3 (128 mM NaCl, 2.7 mM CaCl₂, 1.2 mM MgSO₄, 5 mM KCl, 5 mM Na₂HPO₄, 10 mM Tris-HCl); synaptosomal P₂ fraction from whole rat brain prepared by the method of Whittaker [22] (approx. 300 μ g protein per assay, protein determination according to Lowry et al. [10]; iproniazid (12.5 μ M); and ascorbic acid (1 mM) were preincubated in an atmosphere of 95% O₂ + 5% CO₂ for 5 min at 30°. Then, the

uptake inhibitor 10^{-6} – 10^{-3} M), radioactive substrate ([³H]NE or [5-³H]HT: 1×10^{-7} M, $0.5 \,\mu\text{Ci}$), and buffer to give a final volume of 1.1 ml, were added. After 2 min at 30°, uptake was stopped by cooling the tubes in ice. Two 500 μ l aliquots per sample were filtered through cellulose–nitrate filters (Schleicher and Schüll; BA 85; Ø 15 mm; $0.45 \,\mu\text{m}$ pore size). The filters were rinsed with 10 ml of 0.32 M sucrose, solubilized in 500 μ l cellosolve, mixed with 10 ml of a liquid scintillation solution and counted. Control values for [5-³H]HT and [³H]NE uptake rates were: $44,443 \pm 2578 \,\text{dpm} \times \text{mg}^{-1}$ per min (n=26) and $14,789 \pm 610 \,\text{dpm} \times \text{mg}^{-1}$ per min (n=24), respectively. Data are reported as means \pm S.E.M., and significance was determined by the two tailed Student's t-test.

The influence of test drugs on monoamine oxidase (MAO) [14] isolated from rat liver mitochondria was determined according to Snyder and Hendley [19] with benzylamine, octopamine and tyramine as substrates.

Catechol-O-methyltransferase (COMT) was partially purified according to Axelrod [2] from rat liver (sp. act. $5.6 \,\mathrm{mU/mg}$ protein) and stored in the presence of $2 \,\mathrm{mM}$ DTE at -20° (one unit of enzyme activity is defined as that amount which causes the synthesis of $1 \,\mu\mathrm{mole}$ of metanephrine from epinephrine in $1 \,\mathrm{min}$). The enzyme activity was determined according to Schwabe and Flohé [17].

Chemicals and drugs. DL-[7-3H(N)]norepinephrine (5-15 Ci/mmole), New England Nuclear (Boston, MA) (diluted with L-NE before use); 5-[1.2-3H(N)]hydroxytryptamine binoxalate (15-30 Ci/mmole), New England Nuclear; S-adenosyl-L-[methyl-3H]methionine (100-500 mCi/mmole), Amersham Buchler (Braunschweig, West Germany); Tramadol-HCl, Grünenthal GmbH (Aachen, West Germany); pethidine-HCl, Hoechst AG (Frankfurt, West Germany); morphine-HCl, Merck (Darmstadt, West Germany); cocaine-HCl, Merck; L-methadone-HCl, Hoechst AG; imipramine-HCl, Ciba-Geigy (Basel, Switzerland); tranylcypromine-HCl, Röhm

Table 1. In vitro inhibition of monoamine uptake and effect of transleypromine pretreatment on acute toxicity of tramadol and reference compounds.

	LD ₅₀ Value (mg/kg i.p.)				
Substance	Without pretreatment	With tranylcypromine pretreatment	Distance factor of lethality curves	Inhibition of [5-3H]HT uptake, IC ₅₀ (M)	Inhibition of [3H]NE uptake, IC ₅₀ (M)
	166	90.8	1.8	4.05×10^{-5}	1.38×10^{-5}
Tramadol	(157-175)	(81.1-102)	(1.6-2.1)	$(2.25-7.17\times10^{-5})$	$(0.91-2.12\times10^{-5})$
	37.2	19.8	1.9	4.22×10^{-6}	3.23×10^{-6}
L-Methadone	(31.6-43.8)	(14.4-27.1)	(1.3-2.7)	$(1.66-8.33\times10^{-6})$	$(1.37-5.99 \times 10^{-6})$
	121	64.3	1.9	3.73×10^{-6}	2.83×10^{-6}
Pethidine	(109-135)	(47.5-87.2)	(1.4-2.6)	$(1.22-8.02\times10^{-6})$	$(1.13-5.37\times10^{-6})$
	432	109	4.0	`	,
Morphine	(341–547)	(70.9-167)	(2.4-6.5)	$>5 \times 10^{-4}$	$>5 \times 10^{-4}$
	99.5	64.6	1.5	2.89×10^{-6}	3.92×10^{-6}
Imipramine	(78.4–126)	(51.6-80.9)	(1.1-2.1)	$(1.19-5.37\times10^{-6})$	$(2.54-5.65\times10^{-6})$
	74.5	59.4	1.3	, , ,	6.85×10^{-8}
Cocaine	(65–85.3)	(53.1–66.6)	(1.1-1.5)		$(4.27-10.36 \times 10^{-8})$

^{*} Tramal[®], Grünenthal GmbH, Aachen, West Germany.

Pharma (Darmstadt, West Germany); iproniazid phosphate, Forestex (The Haag, The Netherlands); L-norepinephrine-bitartrate, Serva (Heidelberg, West Germany); L-epinephrine, Serva.

Results and discussion

Tranylcypromine substantially increases the toxicity of all compounds investigated (Table 1). The most prominent increase was found with morphine, lethality is about 4-fold higher than without pretreatment. In combination with tranylcypromine the lethality of methadone, pethidine and tramadol is about 2-fold higher, whereas toxicity of imipramine and cocaine is only slightly, but nevertheless significantly, increased.

In rat brain synaptosomes tramadol inhibits $[5-^3H]HT$ uptake with an IC_{50} value of $4.05 \times 10^{-5}\,M$ thus showing a potency approximately one order of magnitude lower than methadone, pethidine and imipramine. With an IC_{50} value of $>5 \times 10^{-4}\,M$, morphine is only a very weak 5-HT uptake inhibitor (Table 1). Tramadol, methadone, pethidine, morphine and imipramine inhibit synaptosomal $[^3H]NE$ uptake in concentration ranges similar to those affecting 5-HT uptake. With an IC_{50} value of $6.85 \times 10^{-8}\,M$ cocaine is the strongest $[^3H]NE$ uptake blocker tested (Table 1). Tramadol does not have any influence on the activities of mitochondrial rat liver MAO-A and MAO-B and soluble rat liver COMT up to a concentration of $10^{-4}\,M$ (data not shown).

An increase of biogenic amines, particularly of 5-HT is believed to be responsible for toxic interactions of MAO-inhibitors with opioid analgesics [16]. As shown by many investigators [4, 5, 11, 12, 21] synaptosomal 5-HT (as well as NE uptake) is inhibited by several opioid analgesics. Therefore, uptake inhibition in combination with impaired metabolic inactivation by blockade of MAO might increase the cerebral monoamine content to a toxic level [16]. However, comparison of the potentiation of acute toxicity in mice by MAO-inhibitor pretreatment (Table 1) with the inhibition of synaptosomal 5-HT uptake in vitro reveals no quantitative correlation: morphine only slightly inhibited the 5-HT uptake in vitro but its toxicity was increased 4fold by tranylcypromine. MAO inhibition increased the toxicity of tramadol, pethidine and methadone 2-fold, while the 5-HT uptake blocking potency of tramadol was only approximately 1/10 of pethidine and methadone. Toxicity of the uptake blocker imipramine was only slightly affected (1.5-fold increase).

The inhibition of NE uptake by the opioids investigated does not correlate with the increased toxicity induced by MAO inhibitors either. Certainly, monoamine uptake blockade may contribute to the toxicity of opioids in animals treated with MAO inhibitors. Considering the quantitative correlations, however, additional, yet unclarified interferences must be involved.

In principle, NE uptake blockade by tramadol implicates the risk of an enhanced pressor response to endogenous or exogenous NE. The blood levels obtained after recommended therapeutic dosages of tramadol in humans, however, ($<3\,\mu\text{M}$, [7]) range below the concentrations effectively inhibiting NE uptake in rat synaptosomes in vitro. Correspondingly, a potentiation of endogenous NE effects by tramadol has not been observed so far. Nevertheless, blood pressure effects merit special attention, if regular dosages of tramadol are exceeded for some reason, and combined therapy with other drugs impairing monoamine-inactivation should be avoided.

In conclusion, tramadol does not affect metabolic inactivation of monoamines, but impairs uptake of NE and 5-HT in brain synaptosomes, although to a lesser extent than the other opiate agonists investigated with the exception of morphine. Although pertinent clinical complications are hardly predictable and have so far only been established for pethidine, adequate precautions are recommended.

Grünenthal GmbH Centre of Research Zieglerstrasse 5100 Aachen, West Germany HAGEN-H. HENNIES ELMAR FRIDERICHS KLAUS WILSMANN LEOPOLD FLOHÉ

REFERENCES

- I. Arend, B. von Arnim, J. Nijssen, J. Scheele and L. Flohé, Arzneimittel Forsch. 28, 199 (1978).
- J. Axelrod, in *Methods in Enzymology* (Eds. S.P. Colowick and N. O. Kaplan), Vol. V, p. 748. Academic Press, New York (1962).
- 3. F. R. Ciofalo, Life Sci. 11, 573 (1972).
- 4. F. R. Ciofalo, J. Pharmac. exp. Ther. 189, 83 (1974).
- D. H. Clouet and N. Williams, J. Pharmac. exp. Ther. 188, 419 (1974).
- 6. E. Friderichs, F. Felgenhauer, P. Jongschaap and G. Osterloh, *Arzneimittel Forsch.* 28, 122 (1978).
- Grünenthal GmbH, Tramal Basisprospekt (Product information) p. 33, D-5190 Stolberg (1980).
- 8. H. J. Jaffe and W. R. Martin, in *The Pharmacological Basis of Therapeutics* (Eds. Goodman and Gilman) p. 494. Macmillan, New York (1980).
- 9. J. T. Litchfield and F. Wilcoxon, J. Pharmac. exp. Ther. 96, 99 (1949).
- O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. biol. Chem. 193, 265 (1951).
- T. Mennini, R. Pataccini and R. Samanin, Br. J. Pharmac. 64, 75 (1978).
- J. A. Moffat and K. Jhamandas, Eur. J. Pharmac. 36, 289 (1976).
- H. Montel and K. Starke, Br. J. Pharmac. 49, 628 (1973).
- G. Osterloh, E. Friderichs, F. Felgenhauer, W. A. Günzler, Z. Henmi, T. Kitano, M. Nakamura, H. Hayashi and I. Ishii, Arzneimittel Forsch. 28, 135 (1978).
- M. Raiteri, F. Angelini and A. Bertollini, J. Pharm. Pharmac. 28, 483 (1976).
- K. J. Rogers and J. A. Thornton, Br. J. Pharmac. 36, 470 (1969).
- K. P. Schwabe and L. Flohé, in Fortschritte der Klinischen Chemie-Enzyme und Hormone (Ed. E. Kaiser), p. 13. Verlag der Wiener Med. Akademie, Wien (1972).
- T. A. Slotkin, F. J. Seidler and W. L. Whitmore, Eur. J. Pharmac. 49, 357 (1978).
- S. H. Snyder and E. D. Hendley, J. Pharmac. exp. Ther. 163, 386 (1968).
- 20. T. Tammisto, A. Jäättelä, P. Nikki and S. Takki, Ann. Clin. Res. 3, 22 (1971).
- R. O. Warwick and R. C. Schnell, Eur. J. Pharmac. 38, 329 (1976).
- V. P. Whittaker, in Handbook of Neurochemistry (Ed. A. Lajtha), Vol. II, p. 327. Plenum Press, New York (1969).